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ABSTRACT 1 

The Digital Elevation Model that has been derived from the February 2000 2 

Shuttle Radar Topography Mission (SRTM) has been one of the most 3 

important publicly available new spatial datasets in recent years. However, the 4 

‘finished’ grade version of the data (also referred to as Version 2) still contains 5 

data voids (some 836,000 km2) – and other anomalies – that prevent immediate 6 

use in many applications. These voids can be filled using a range of 7 

interpolation algorithms in conjunction with other sources of elevation data, 8 

but there is little guidance on the most appropriate void filling method.  This 9 

paper describes: (i) a method to fill voids using a variety of interpolators, (ii) a 10 

method to determine the most appropriate void filling algorithms using a 11 

classification of the voids based on their size and a typology of their 12 

surrounding terrain; and (iii) the classification of the most appropriate 13 

algorithm for each of the 3,339,913 voids in the SRTM data. Based on a 14 

sample of 1,304 artificial but realistic voids across six terrain types and eight 15 

void size classes, we found that the choice of void filling algorithm is 16 

dependent on both the size and terrain type of the void. Contrary to some 17 

previous findings, the best methods can be generalised as: Kriging or Inverse 18 

Distance Weighting interpolation for small and medium size voids in relatively 19 

flat low-lying areas; Spline interpolation for small and medium sized voids in 20 

high altitude and dissected terrain; Triangular Irregular Network or Inverse 21 

Distance Weighting interpolation for large voids in very flat areas, and an 22 

advanced Spline Method (ANUDEM) for large voids in other terrains. 23 

Key words: DEM, interpolation methods, void filling, DEM fusion  24 
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1. Introduction 1 

A Digital Elevation Model (DEM, or more correctly a Land Surface Model - LSM) is 2 

one of the most useful sources of information for spatial modelling and monitoring, 3 

with applications as diverse as: Environment and Earth Science, e.g. catchment 4 

dynamics and the prediction of soil properties; Engineering, e.g. highway construction 5 

and wind turbine location optimisation; Military, e.g. land surface visualisation, and; 6 

Entertainment, e.g. landscape simulation in computer games (Hengl and Evans 2007). 7 

The extraction of land surface parameters – whether they are based on ‘bare earth’ 8 

models such as DEMs derived from contour lines and spot heights, or ‘surface cover’ 9 

models derived from remote sensing sources that include tree top canopies and 10 

buildings for example – is becoming more common and more attractive due to the 11 

increasing availability of high quality and high resolution DEM data (Gamache 2004). 12 

One of the most widely used DEM data sources is the elevation information provided by 13 

the Shuttle Radar Topography Mission (SRTM) (Coltelli et al. 1996, Farr and Kobrick 14 

2000, Gamache 2004), but as with most other DEM sources, the SRTM data requires 15 

significant levels of pre-processing to ensure that there are no spurious artefacts in the 16 

data that would cause problems in later analysis such as pits, spikes and patches of no 17 

data (Dowding et al. 2004, Gamache 2004, Chaplot et al. 2006, Fisher and Tate 2006).  18 

In the case of the SRTM data, these patches of no data are pervasive (USGS 2006b) and 19 

must be filled or interpolated, preferably with auxiliary sources of DEM data. This 20 

paper describes a procedure to determine the most appropriate interpolation methods 21 

(with and without auxiliary DEM data) for no data patches of different sizes and in 22 

different terrain types.  The rationale for this paper stems from a statement by Fisher 23 

and Tate (2006) that no single interpolation method exists for the most accurate 24 
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interpolation of terrain data. Such a procedure is necessary for developing a high quality 1 

global DEM derived from the SRTM data where all no data areas have been filled using 2 

the best performing interpolation algorithm available.  3 

 4 

1.1. The Shuttle Radar Topography Mission (SRTM) 5 

The 11 day Shuttle Radar Topography Mission (SRTM) flew in February 2000, and has 6 

provided publicly available elevation surface data for approximately 80% of the world’s 7 

land surface area (from 60ºN to 56ºS), with a post spacing of 1 arc seconds (often 8 

quoted as 30 metres resolution) in the USA, and a degraded 3 arc second (often quoted 9 

as 90 metres resolution) product for the rest of the world. It is a snapshoot of the 10 

reflective surface of the earth during the time period of the mission, and is about 100 11 

times more detailed than other existing freely available global elevation data, such as 12 

GTOPO30 (USGS 1996) and GLOBE (Hastings and Dunbar 1998). The SRTM 13 

elevation data is derived from X-band and C-band Interferometric Synthetic Aperture 14 

Radar (InSAR) (Werner 2001, USGS 2006b). This paper deals with the better known 15 

and widely available C-band product, which we will refer to as SRTM elevation data. 16 

As with all DEMs derived from remote sensing sources, the SRTM elevation data 17 

include trees, buildings and other objects on the earth surface and therefore the dataset 18 

is a surface elevation model  (Rodriguez et al. 2005, 2006).  19 

Several products have been derived from the SRTM data. Firstly, the raw data was 20 

processed by a suite of programs at JPL (Farr and Kobrick, 2000), and was made 21 

available primarily for research purposes. This was termed “unfinished” data. Further 22 

processing generated DEMs in full DTED compliance level, and these were termed 23 

“finished” data (Slater et al., 2006). For both datasets: elevations outside the USA are 24 
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degraded either by (i) averaging or (ii) by thinning (i.e. taking one sample out of the 1 

nine available posts). The horizontal datum of the SRTM data is WGS84, whilst the 2 

vertical datum is EGM96 which has implications for certain applications. 3 

The C-band product has significant areas of missing data due to the nature of radar 4 

data and the interferometric process used to create the DEM (Figure 1). The reasons for 5 

the missing data are geometric artefacts, specular reflection of water, phase unwrapping 6 

artefacts and voids due to complex dielectric constant (see Kervyn 2001 for further 7 

information). For example, the InSAR instrument used to generate the SRTM elevation 8 

data had an incidence angle of between 30º and 60º, making it difficult to generate 9 

images for terrain slopes corresponding to that range of angles (Gamache 2004, Eineder 10 

2005).  11 

For the purpose of this paper, we define any areas of missing data that exists in the 12 

SRTM data as voids. The number of remaining voids with different sizes in the SRTM 13 

data are a considerable problem for many uses and applications, including hydrological 14 

modelling, terrain indices, land surface characterisation, digital soil mapping and many 15 

other geomorphometric models, and thus these voids need to be filled to create a 16 

seamless DEM (MacMillan et al. 2000).   17 

The “finished” version of the SRTM data (described more fully in section 2.1) 18 

provided by USGS (United States Geological Survey) and NASA (National Aeronautics 19 

and Space Administration) still contains 3,399,913 voids accounting for 803,166 km2 20 

(an area comparable to Pakistan or somewhat larger than Texas), and in extreme cases, 21 

such as Nepal, they constitute 9.6% of the country area with some 32,688 voids totalling 22 

an area of 13,740 km2. Figure 1 shows the proportion of each 1 × 1 degree SRTM tile 23 

that is composed of void areas. Figure 2 shows two extreme examples of regions where 24 
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there are many voids, Libya (upper) and Nepal (lower). Of the 210 countries covered by 1 

the SRTM data, two countries have void areas larger than 10% of their country size, 2 

nine countries more than 5% and 14 more than 2%. In total, 44 countries have 1% or 3 

more of their area covered by voids. The void size / frequency distribution of all voids 4 

in the SRTM dataset is shown in Figure 3.  5 

 6 

[Insert figure 1] 7 

 8 

[Insert figure 2] 9 

 10 

[Insert figure 3] 11 

 12 

Voids occur for different reasons in different terrain types: a void due to shadowing 13 

will more likely occur in mountainous areas, whereas a void due to complex dielectric 14 

constant is more likely to occur in desert areas like the Sahara. Void frequency with 15 

respect to elevation has been demonstrated to have a bimodal distribution with peaks of 16 

the distribution occurring in flat areas and in steeply sloping areas (Gamache 2004, 17 

Falorni et al. 2005). This distribution is clearly seen in Figure 1.  18 

Since this study focuses on methods of void filling the SRTM elevation data, we 19 

will not discuss the accuracy or the errors in the SRTM data, though it is worth 20 

mentioning that the sensor error is stated to be +/-16m (USGS, 2006b). Further details 21 

on SRTM accuracy are available in the literature (Toutin 2002, Rabus et al. 2003, 22 

Gamache 2004, Falorni et al. 2005).  23 
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Fisher and Tate (2006) provide a thorough review of the causes and consequences of 1 

error in DEMs. They classify errors into three different groups: (i) gross errors (e.g. 2 

system malfunctions), (ii) systematic errors, which might be described by a functional 3 

relationship (Thapa and Bossler, 1992: p836 in Fisher and Tate 2006), and (iii) random 4 

errors with/without spatial dependence that arise for different reasons. Voids are one 5 

type of systematic error, which can be overcome with specific algorithms. 6 

 7 

1.2. Void filling methods  8 

Interpolation methods are widely used in the generation of DEMs. However, void filling 9 

(VF) methods contain a special subset of interpolation algorithms with certain 10 

restrictions, and also other methods such as the fill and feather approach (Dowding et 11 

al., 2004). All interpolation algorithms for void filling DEMs use the elevation data 12 

surrounding the void in the interpolation process. If auxiliary sources of elevation (for 13 

example, ASTER DEMs, GTOPO30, digitised topographic maps and land survey 14 

measurements) are available, then some of these algorithms can incorporate this 15 

information to improve the accuracy of the interpolation. However, there are often 16 

severe differences between the DEM and the auxiliary data that need to be addressed 17 

before the void filling algorithms can use auxiliary data. These differences can occur in 18 

: (i) the spatial resolution, (ii) the vertical datum, (iii) horizontal and vertical shifts, (iv) 19 

first or second order trends, (v) production errors, (vi) the type of Surface Model 20 

(SRTM is a surface model, whereas a DEM based on topographic data is a bare earth 21 

model) and, (vii) the spatial distribution of errors (see for example Hutchinson, 1989, 22 

Kaab 2005, Fisher and Tate 2006). 23 
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VF algorithms can be categorised into surface (Katzil and Doytsher 2000), 1 

volumetric (Vedera et al. 2003) or example based methods (Sharf et al. 2004). 2 

Alternatively, Katzil and Doytsher (2000) divide the algorithms into polynomials (such 3 

as linear estimation, 1D and 2D polynomials of the third order, cubic splines, or 4 

iterative spline algorithms) and non polynomial approaches (such as kriging, inverse 5 

distance weighting, fill and feather approaches or moving average).   6 

Several authors have evaluated the quality of different algorithms to fill in voids for 7 

radar data as well as other DEM sources. Katzil and Doytsher (2000) tested linear 8 

estimation, kriging and cubic spline for elevation, but the evaluation was not performed 9 

on real voids. Instead a method called cross-validation was applied (removing one point 10 

and then comparing the elevation of the generated surface against the elevation of the 11 

point), which showed no significant differences between methods. Dowding et al. 12 

(2004) used a fill and feather (FF) approach (i.e. they used an auxiliary elevation dataset 13 

to patch the void area, and then smoothed the transition zone between both datasets) to 14 

incorporate auxiliary information into a VF algorithm. They selected seven voids with 15 

sizes ranging from 36 to 2,541 pixels and then compared the results both visually and 16 

against a reference DEM and ground control points. The results showed differences 17 

between 0 m and 22 m for the area of seven different voids against a reference DEM. 18 

Kuuskivi et al. (2005) used seven real world voids across different terrain types to 19 

evaluate the performance of a commercial fill and feather algorithm that used high 20 

quality auxiliary DEM data against three freeware programmes: 3DEM (Visualization 21 

Software LLC, 2004); VTBuilder (Virtual Terrain Project, 2004); and BLACKART 22 

(TerrainMap.com, 2004). The study clearly demonstrated the large differences in results 23 

that can occur when using different VF algorithms and the potential improvements that 24 



 

 

9

can be achieved with good quality auxiliary information. Grohman et al. (2006) 1 

presented a geostatistical algorithm (Inverse Distance Weighting - IDW) together with a 2 

linear adjustment of the elevation height called Delta Surface Fill (DSF) and compared 3 

it against a FF approach using five artificially created voids in void prone terrain types 4 

from the SRTM data. The authors concluded that the performance of the DSF algorithm 5 

produced better results based on visual interpretation and reduced the standard deviation 6 

of the error surface.  7 

Several other studies have presented algorithms that are capable of filling void 8 

areas, but did not provide statistical results. For example Hofer et al. (2006) tested an 9 

advanced cubic spline method which keeps certain error bounds on nine voids and 10 

evaluated the void filling results graphically. Almansa et al. (2006) evaluated four 11 

different artificial voids at different locations by comparing three different methods. 12 

Another example is Kääb (2005) whereby a simple replacement of SRTM by ASTER 13 

data was made without any further evaluation. 14 

There are several observations that can be drawn from these studies. Firstly, each 15 

study typically compares three or four algorithms at most, whereas a GIS may contain 16 

many more suitable algorithms (e.g. IDW, Kriging, ANUDEM, Spline, and Trend 17 

Estimation). Secondly, some of the studies contain algorithms that are not easily 18 

reproducible within a GIS or Image Analysis System because their description is too 19 

vague or due to commercial interests. We argue that if an improved global DEM is to be 20 

produced from the SRTM data, then the VF algorithms should be accessible and 21 

repeatable. Thirdly, the studies presented results based on a handful of voids which may 22 

not be representative of the 3,339,913 voids in the SRTM data, and are not sufficient for 23 

robust statistical analysis. A much larger sample of real world voids is required before 24 
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we can suggest one algorithm over another with any degree of confidence. Fourthly, 1 

occasionally these voids were artificial and hence may not be representative of real 2 

world voids. We realise that unless a high quality auxiliary DEM is available, then it is 3 

impossible to assess the veracity of the results from void filling as there is no ground 4 

truth data. However, it is possible to create artificial voids that are representative of real 5 

voids in terms of size, shape and terrain location. Fifthly, terrain can have a large 6 

influence on VF results. Katzil and Doytsher (2000) acknowledged that terrain has an 7 

influence on the void filling process; however, they could not suggest a recommended 8 

method across three terrain types (mountains, hilly and planar). Grohman et al. (2006) 9 

recognised the relief type for their five voids, which lead to decreasing average standard 10 

deviation from rugged to moderate to flat terrain. Again, the sample of voids should be 11 

sufficiently large across a range of terrain types in order to assess the influence of 12 

terrain ruggedness on algorithm choice and performance. Finally, void size is critical. It 13 

is much harder to accurately fill a large void than a small one. Grohman et al. (2006) 14 

recognised the importance of void size, but did not provide further insight. Again, the 15 

sample of voids should include sufficient numbers of voids of sizes that are 16 

representative of voids found in each terrain type. 17 

In conclusion, there has been no thorough evaluation of the many (GIS ready) VF 18 

algorithms for DEM data using a sufficient number of voids of varying size across 19 

different terrain types in order to determine the most appropriate VF method(s). 20 

 21 

1.3. Research objectives 22 

The objectives of this study are to: (i) describe void characteristics in terms of size and 23 

terrain unit; (ii) determine which VF algorithm performs best without any auxiliary 24 
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information on an exhaustive dataset, with respect to terrain unit and void size; (iii) 1 

determine if low grade auxiliary information can improve the VF algorithm 2 

performance; (iv) determine which VF algorithm performs best with respect to terrain 3 

unit and void size using auxiliary information, and; (v) provide a global void dataset 4 

stating the best VF algorithm that should be used based on the results from (ii) and (iv).  5 

 6 

2. Study area and data  7 

As shown in Figure 1, data voids occur in all regions of the SRTM data, but after 8 

consideration of the spatial distribution of voids and terrain units and computational 9 

limitations we limited our sample of voids to Africa, an area of approximately 10 

29,800,000 km2 and containing 1,168,136 voids. This provided a sufficient number of 11 

voids across a wide range of sizes and terrain units from which to perform the sampling. 12 

 13 

2.1. SRTM data preparation 14 

SRTM data is available in different formats from different distributors (a testament to 15 

its usefulness and popularity), and here we use the "finished" 3-arc second averaged 16 

SRTM data set that is available from the USGS EROS data server (USGS 2006a). The 17 

pre-processing and editing of this data is described in (USGS 2006b), but the essential 18 

details are that spikes and pits in the data with surrounding elevation differences greater 19 

than 100 m were removed, voids smaller then 16 pixels were filled with a nearest 20 

neighbour interpolation while larger voids were left as were, and water bodies and 21 

coastlines were depicted as described in (USGS 2006c). The data are available in one × 22 

one degree tiles in 16 bit integer BIL format. 3,250 tiles were downloaded from 23 

ftp://e0srp01u.ecs.nasa.gov/srtm/version2/SRTM3/Africa and were converted to 24 
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ESRI™ grid format and mosaicked together in ArcGIS 9.1© to create a continental 1 

DEM for Africa with extents 39ºN-35ºS and 30ºW-60ºE. Since this data has been edited 2 

for small voids, coastlines and water bodies, we assume than any remaining land area 3 

which contains no elevation information is a void. 4 

For each of the 1,168,136 voids we stratified the voids based on the natural 5 

logarithm of the number of void pixels and grouped them into eight size classes with the 6 

following number of pixels (numbers in parentheses are minimum, average and 7 

maximum) per class; [A] (1,10,25), [B] (26,50,80), [C] (81,120,140), [D] (141,240,400) 8 

[E] (401,600,800) [F] (801,1100,2500), [G] (2501,4000,8000) and [H] 9 

(8001,10000,1267052). 10 

 11 

2.2 Auxiliary DEM data 12 

As stated in section 1.2, some VF methods incorporate auxiliary DEM information in 13 

order to improve the accuracy of the results. In this study we used the SRTM30 14 

(Gamache 2004, USGS 2006d) and GTOPO30 DEMs (see sections 1.1 and 2.1 for more 15 

details on these two datasets), which were stored in ESRI™ grid format, as these are the 16 

only DEM datasets available for all of Africa. 17 

 18 

2.3 Terrain typology 19 

The terrain typology is based on the SRTM30 data. A half degree resolution, 15 class 20 

terrain typology was derived from this DEM based on a combination of the average 21 

SRTM30 elevation within each half degree pixel and the relief roughness of the 22 

SRTM30 data within the pixel, defined as the range of SRTM30 elevation values in the 23 

pixel divided by half the pixel length connecting the centre of each grid pixel (Meybeck 24 
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et al. 2001). For simplification, we aggregated these 15 classes into six major terrain 1 

units (TU), which have similar land surface characteristics. The relief classes (1) plains, 2 

(2) mid-altitude plains and (3) high-altitude plains were grouped into PLAINS; (4) 3 

lowlands,  (6) platforms, (7) low plateaus, and (8) mid-altitude plateaus were grouped 4 

into PLATEAUS; (9) high plateaus and (10) very high plateaus were grouped into 5 

HIGH PLATEAUS; (5) rugged lowlands and (11) hills were grouped into HILLS, (12) 6 

low mountains, (13) mid altitude mountains were grouped into MOUNTAINS, and; 7 

(14) high mountains, and (15) very high mountains were grouped into HIGH 8 

MOUNTAINS. Figure 4 shows the original 15 terrain classes for Africa and their 9 

grouping into six major terrain units . 10 

The sizes of terrain units are quite different across Africa. Void size is also 11 

significantly different between TU. Therefore we used that as additional stratification 12 

factor, which allowed us to assess differences between TU (Fig 5). The highest 13 

percentage of void area per total TU area is reached in PLAINS, which can be attributed 14 

to the dunes in desert areas, followed by voids in HIGH MOUNTAINS. The PLAINS 15 

cover between 30- 50% of all large void areas (void size groups G and H), with a 16 

percentage around 20 % for all other size classes. HIGH MOUNTAINS on the other 17 

hand covers shows an increase from 20% to 30% over all size classes (except the H size 18 

class). A decreasing percentage of voids can be observed for PLATEAUS, 19 

MOUNTAINS and HILLS with increasing void size, whereas the HIGH PLATEAUS 20 

show a strong increase in percentage of voids with increasing size class (Fig. 5). 21 

 22 

[Insert Figure 4] 23 

 24 
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[Insert Figure 5] 1 

 2 

2.4 Void selection 3 

The voids were sampled using the following procedure. We first identified the terrain 4 

unit of each of the 1,168,136 voids. For the few occasions where a void lay in the 5 

boundary between two terrain units, it was assigned to the terrain unit in which the 6 

greater area of the void lay. No TU was assigned in the very few cases where a void was 7 

evenly distributed over two or more terrain units. In the cases where the half degree 8 

resolution TU map did not extend over coastal voids the closest TU pixel (almost 9 

always PLAINS) was assigned to the void. Secondly, the previously discussed size class 10 

was assigned to each void. The distribution of all the voids by terrain unit and size class 11 

is shown in Table 1. The distribution by terrain units agrees with the findings of Falorni 12 

et al. (2005), but we have found no corresponding study for the distribution of void 13 

sizes and void size by terrain unit.  14 

 15 

[Insert Table 1 ] 16 

 17 

Within each terrain unit we randomly selected 15 voids based on their size 18 

distribution (i.e. we selected more small voids than large ones in a given terrain unit if 19 

small voids occurred more frequently). We then duplicated each of these voids a 20 

number of times, again in relation to their size distribution, and manually relocated them 21 

to neighbouring locations within the same terrain unit, ensuring that the void was 22 

relocated to a similar landscape and that it did not overlap with existing voids. For 23 

example, a small void (size class A) in terrain unit PLAIN would be duplicated 15 times 24 
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and moved to 15 neighbouring locations in terrain unit PLAIN to create 15 voids for 1 

analysis. Duplication of real void areas ensures that the shape, size and orientation of 2 

the artificial voids are representative of real voids. However, it does risk the creation of 3 

artificial voids in areas of the terrain that are not representative of the terrain of the real 4 

void. To ensure that we relocated the voids to comparable terrain, we employed (i) 5 

visual inspection of the terrain and (ii) computed the mean and standard deviation of the 6 

elevation in a buffer zone surrounding the real void and compared it the mean and 7 

standard deviation of the elevation in buffer zones surrounding the relocated void.  No 8 

significant changes could be observed in the standard deviation of the surrounding 9 

elevation between the groups of relocated and the real voids across the original 15 10 

terrain types (based on a t test), except for rugged lowlands and low plateaus. No 11 

differences were observed when the results were aggregated into the six terrain units 12 

(results not shown). Therefore we assume that the visual relocation was an acceptable 13 

approach for generating realistic artificial voids. 14 

In this way we created 1,304 artificial but realistic voids based on real void 15 

characteristics distributed across six terrain units and eight size classes (Table 2). These 16 

voids were stored as polygon coverages in ArcInfo.  17 

 18 

[Insert Table 2] 19 

 20 

2.5  Data pre-processing for the artificial voids  21 

A working area for each single void was created by enlarging the maximum extent of 22 

the void by 100 pixels in all directions and extracting the underlying DEM data within 23 

this buffer zone. The number of pixels for this buffer was based on empirical testing of 24 



 

 

16 

the algorithm under different terrain units (results not shown). We then ‘punched out’ 1 

the void from this buffered area and used the remaining ‘ring’ of DEM data to create (i) 2 

elevation spot heights or points, with one point for each DEM pixel, and, (ii) contours at 3 

10 m intervals. There were occasions where it was not possible to extract contours from 4 

the buffered region, for example where the terrain was extremely flat. In these cases we 5 

employed an iterative process to decrease the contour interval until a contour layer 6 

could be created (the lower limit was 1 m). Where this process did not result in a 7 

contour layer, we extended the buffer up to a maximum threshold of 0.1 degrees. These 8 

contours were stored as line or point coverages in ArcInfo.  9 

Auxiliary spot height elevation data was extracted from the SRTM30 and 10 

GTOPO30 at 30 arc second spacing unless either one of two restrictions were met. The 11 

first restriction is the size of the void (coarse auxiliary data will not help in the 12 

interpolation of small voids); and the second considered the shape of the void (e.g. a 13 

long, thin void is better filled with only the surrounding DEM data).  14 

SRTM data have a high absolute accuracy in contrast to GTOPO30 and to account 15 

for such differences we adjusted the elevation values in the GTOPO30 DEM as follows. 16 

For each void, the auxiliary DEM was re-sampled to the resolution of the SRTM dataset 17 

and the void area was punched out from this re-sampled auxiliary dataset. The 18 

difference in elevation between both datasets was used to raise or lower the elevation 19 

values for the original resolution auxiliary dataset. Thereby we accounted for some 20 

differences between datasets (i, ii, vii) as outlined in section 1.2. We did not make any 21 

adjustments for other errors (e.g. geometrical location or trends in the auxiliary data). 22 

The spot heights were stored as point coverages in ArcInfo. 23 
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The SRTM elevation from the void stamped area constitutes the ‘truth’ layer against 1 

which the results from the VF algorithms were compared. Essentially, this is equivalent 2 

to withholding pixels from the interpolation process and then comparing the results 3 

from the VF algorithms against them afterwards (see also Yang and Hodler, 2000). 4 

Thus, for each of the 1,304 voids we created a truth DEM, a set of contours and spot 5 

heights buffering an artificial void area, and where applicable, two auxiliary spot height 6 

datasets.  7 

 8 

3. Void filling methods 9 

The procedure for applying and evaluating the VF algorithms is outlined in Figure 6 and 10 

described in detail in the following sections. Unless otherwise stated, all processing was 11 

carried out in ArcInfo Workstation 9.1 using Arc Macro Language (AML) routines and 12 

standard ArcInfo interpolation functions from the Arc and Grid environments. The 13 

results of the VF methods were projected from geographic projection 14 

(latitude/longitude) into Mollweide Equal Area projection where the longitude of the 15 

projection centre was the longitude of the centroid of the void, and both vertical and 16 

horizontal units were in metres. 17 

 18 

[Insert Figure 6] 19 

 20 

3.1  Void filling methods  21 

The following eight VF algorithms were implemented: 22 
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i) Kriging (KR), ii) Spline (SP), iii) Trend (TR), iv) Inverse Distance Weighting (IDW), 1 

v) Moving Window Average (MW), vi) Fill and Feather (FF), vii) Triangulated 2 

Irregular Network (TIN) and viii) ANUDEM (ANU).  3 

The geostatistical methods (KR, SP, TR and IDW) require several input parameters, 4 

but we used default values wherever possible, since it was too complex and too time 5 

consuming to adjust the parameters for each method and each void. One might criticise 6 

this approach since adjusting the parameters could improve the interpolations on a case 7 

by case basis. However since the VF algorithms are all well known and long standing 8 

implementations, we assume that the default values provide reasonable results under 9 

most conditions.  10 

The implementation for KR is based on McBratney et al. (1986), using a spherical 11 

semi-variogram model with an automatically fitted function. We used a 10th order linear 12 

polynomial regression (based on manual testing, results not shown) for TR. The SP 13 

method follows Franke (1982) and Mitas and Mitasova (1988) and performs a two-14 

dimensional minimum curvature spline interpolation resulting in a smooth surface that 15 

passes exactly through the input points. In this case we used regularised splines which 16 

yield a smooth surface. We did not test tension splines as in Mitasova and Hofierka 17 

(1993), even though it is available as an option in ArcInfo. IDW was implemented 18 

following Watson and Philip (1985) based on the 12 nearest neighbouring points.  19 

MW interpolates the void area by computing elevation values in the void pixels next 20 

to the void boundary based on the local average of the neighbouring elevation pixels.  21 

This process continues inwards until all void pixels are filled. For FF, we re-sampled the 22 

auxiliary information to the resolution of the truth DEM, buffered it inwards, filled in 23 

the void using this re-sampled auxiliary DEM, and closed any remaining void pixels 24 
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applying the MW method with a 3 × 3 pixel window. More advanced approaches are 1 

possible, which alter the surface of the original DEM (Dowding et al. 2004); however 2 

these were not implemented here.  MW and FF are complementary in that MW is used 3 

where there is no auxiliary DEM, and FF is used where there is. 4 

For TIN, which is by definition a triangular network of mass points with 3D-5 

coordinates connected by edges to form a triangular tessellation, the weed tolerance (the 6 

minimal tolerance between two data points at a line) was set to 0.0001 of the maximum 7 

extent of the input data set, whereas the proximal tolerance (minimal distance between 8 

single data points) was set to the machine precision of the host computer. 9 

The ANU approach (Hutchinson 1989, Hutchinson and Dowling 1991) is 10 

implemented in ArcInfo as TOPOGRID, and creates a hydrologically correct DEM 11 

using a multi-resolution iterative finite difference interpolation (extended spline) 12 

method, which ensures that ridges are maintained, streams are enforced and spurious 13 

sinks are removed. The ANU approach contains three parameters which are used for the 14 

smoothing of the input data and the removing of sinks  (ESRI 2000). The TOL1 15 

tolerance was initially set to 5 m (half the height difference between contours); 16 

however, if the maximum elevation difference observed in the data preparation dataset 17 

was below the contour interval, it was set to half that value. Values for the horizontal 18 

and vertical standard errors were set to one and zero respectively. 19 

The authors limited the number of implementations to the above described 20 

algorithms, though even more advanced algorithms (Soile 1991, Hofer et al. 2006) look 21 

advantageous. If needed, more advanced algorithm e.g. conditioned simulations 22 

(Holmes et al. 2000) could be implemented in the processing chain.   23 

 24 
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3.3 Evaluation 1 

For each void we applied the seven VF algorithms three times, once with no auxiliary 2 

data, and once each with the SRTM30 and GTOPO30 information, resulting in 21 3 

DEMs, plus the reference DEM. A visual example of the results from each VF 4 

algorithm for a set of voids is shown in Figure 7. Figure 7a shows the void to be filled, 5 

whereas the other examples (b to i) present the different VF results. The effect of coarse 6 

resolution auxiliary data is clearly visible in Figure 7i with the Fill and Feather 7 

approach. In Figure 7h the extrapolation by moving window shows some limitation as 8 

extrapolation from the borders of the void occurs. The geostatistical algorithms in 9 

Figures 7d, e and f show only slightly different visual appearances, e.g. the 10 

representation of the peak on the left side of the large voids. Finally, the TIN and 11 

ANUDEM approaches show slightly different elevation surfaces, with TIN creating a 12 

ridge in the major void (Figure 7c), which is not visible in the hydrologically correct 13 

ANUDEM surface (Figure 7b). 14 

We compared the elevation of the reference DEM (zRef) to the 21 DEM (zDEM) by 15 

computing the Root Mean Square Error (RMSE), Pearson’s Correlation Coefficient (ρ), 16 

the average difference (μ), the sum difference (γ) and the standard deviation of the 17 

difference between both surfaces (σ). Additionally, we computed the area for each void.  18 

We choose an evaluation based on the total area of the void similar to Grohman et 19 

al. (2006) in contrast to a selected number of GCP (Dowding et al. 2004). 20 

The RSME was computed between the reference elevation and the 21 elevation 21 

surfaces. Each void filled DEM patch was ranked from 1 (lowest RMSE) to 7 - or 21 for 22 

a comparison across all variations - (highest RMSE). The distribution of the ranking 23 
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relative to terrain and void size was assessed by summarising the ranking results by: (i) 1 

terrain unit, (ii) size class, (iii) terrain unit and size class and (iv) auxiliary datasets. 2 

Fisher and Tate (2006) argue that the RMSE is not necessarily a good estimator of 3 

the error, recommending the mean error (ME) and the error standard deviation (S), 4 

where n is the number of pixels in the void:  5 

n
ME γ

=  6 
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We performed the comparative analysis based on RMSE, ME and S and observed 9 

consistent best VF results for different TU/Void size classes for RSME and S. ME 10 

showed diverse rankings of different algorithms. For the remaining course of this paper 11 

we provide results for RSME only, and discuss the S and ME results where appropriate. 12 

We are aware that a global statistic was used to compare the filled voids against the 13 

truth surface, rather than evaluation methods which take the spatial pattern of errors into 14 

account or which identify the different factors which led to that error.  15 

 16 

4. Results 17 

4.1. Evaluation of the void filling algorithms with respect to terrain unit 18 

Table 3 shows the statistical summary of the ranking results when the void is classified 19 

by its terrain unit, irrespective of the size of the void. The Table 3 shows the mean and 20 

standard deviation (in parentheses) of the ranking of each VF method for each terrain 21 

unit, with and without an auxiliary DEM. The geostatistical method KR and the 22 

mechanical method SP (e.g. no assessment of the uncertainty of the model is possible) 23 
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are consistently the “best” methods, with KR performing better in flatter areas (Plains, 1 

Plateaus and High Plateaus) and SP performing better in mountainous terrains (Hills, 2 

Mountains and High Mountains). Differences between VF methods in RMSE can triple 3 

(e.g. see first row differences between KR (6.04 and SP 17.40), which agrees with the 4 

Fisher and Tate (2006) statement that no single interpolation method exists that is the 5 

most accurate for the interpolation of terrain data.  6 

Still, the “best” method in Table 3 sometimes contains groups of 2 different VF 7 

methods, almost similar in RSME results. An example is the VF for PLAINS without 8 

any auxiliary DEM, where KR (6.04) and IDW (6.44) show similar results (similar 9 

results = ± 1 RMSE difference). On the contrary SP, MW and ANU are the most 10 

variable in terms of performance. On the other hand, for certain TU, e.g. in HIGH 11 

MOUNTAINS, the algorithm SP (4.06) shows the “best” performance, with results of 12 

all other algorithms being quite different.  13 

Related to that last observation, the standard deviation, which is larger than for all 14 

other VF methods in that TU, suggests that there were several voids where SP 15 

performed poorly. Therefore the SD is a good indicator of the general applicability of 16 

the VF algorithm for a given TU. In this case, it would be advisable to check further to 17 

identify cases, which are not well handled (e.g. it could be an effect of the void size) and 18 

to rerun the analysis.  19 

Generally, the use of auxiliary information of the GTOPO30 dataset increased the 20 

RMSE for all VF methods except for small improvements in TR. This might be 21 

attributed to the different types of errors not accounted for in our methodology (see also 22 

section 1.2). 23 
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The use of SRTM30 as an auxiliary dataset decreased the RMSE/S for most case, 1 

and decreased the standard deviation indicating less variation in the level of 2 

improvement. This is not surprising since SRTM30 is an up-scaled and void-filled 3 

derivative of the SRTM data. One could argue that the use of SRTM30 should be 4 

preferred, however in practice this means that we are down-scaling data (SRTM30 to 5 

SRTM) from a previous up-scaling (SRTM to SRTM30)! This circularity may be 6 

acceptable in certain cases if we know how the SRTM30 data was generated in the area 7 

of the particular void we are filling. This problem is discussed further in section 5.2.1. 8 

 9 

[Insert Table 3] 10 

 11 

4.2. Evaluation of void filling methods with respect to void size  12 

Table 4 shows the statistical summary of the ranking results when the void is classified 13 

by size. Again, the table shows the mean and standard deviation (in parentheses) of the 14 

ranking of each VF method for each size class, with and without an auxiliary DEM. In 15 

this classification of voids, KR is consistently the best method for small and medium 16 

sized voids, regardless of the use of auxiliary data. If auxiliary data are used, KR 17 

performed best up to void size class F compared with up to void size class D without 18 

auxiliary information. The reason behind this is probably that the KR delivers an 19 

average elevation surface, which closer resembles the reference DEM, in contrast to the 20 

TIN dataset. In TIN the relationship between triangles and their adjacent neighbours are 21 

handled more stringently, more closely resembling the input dataset.  22 

For large and very large voids, the inclusion of an auxiliary DEM has an obvious 23 

effect on the performance of the algorithms. TIN is better where there is no auxiliary 24 
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information, IDW is better where GTOPO30 is used and TIN or ANU are best when 1 

SRTM30 is used. One might speculate on the differences between the auxiliary datasets. 2 

One possible explanation is that TIN/ANU requires ‘good quality’ auxiliary 3 

information, whereas IDW as a geostatistical algorithm generates an “average surface” 4 

as mentioned earlier.  5 

 6 

[Insert Table 4] 7 

 8 

4.3. Evaluation of void filling methods with respect to terrain unit and void size  9 

Table 5 shows the best method for the final classification based on both terrain unit and 10 

void size, resulting in 48 possible void typologies, although as can be seen from Table 11 

5a, six of these typologies contain no voids (High Plateaus in particular is a rare terrain 12 

unit) and the number of voids per typology varies from 80 to 3. Tables 5a to 5c show 13 

the best performing VF algorithm for each typology, again using no auxiliary DEM 14 

(Table 5a), GTOPO30 (Table 5b) and SRTM30 (Table 5c). The table cells are shaded to 15 

help interpretation. 16 

The first observation is that KR outperforms any other VF algorithm for very small 17 

voids (Class A), except in High Mountains, where SP is better. Secondly, for very large 18 

voids in mountainous terrain (arguably the most difficult voids to interpolate), ANU and 19 

TIN are the best, with ANU being superior when SRTM30 is used. Other noticeable 20 

trends include IDW in planar areas for large voids with no DEM or GTOPO30, and SP 21 

for medium to large voids (Classes C to F) for all terrain units except Plains, and 22 

especially for Mountains and High Mountains.  23 



 

 

25

A test of the SD of the RSME for the different methods showed a similar 1 

distribution across all VF methods, void sizes and terrain units, which allows us to be 2 

quite confident in the results presented here. One exception is however for the largest 3 

void class (H) in the terrain unit PLAINS and PLATEAUS for the VF method SP. The 4 

reason for that exception might be attributed to the relatively low number of 5 

investigated voids in that class.  6 

 7 

[Insert Table 5] 8 

 9 

Looking across tables 5a to 5c, the use of coarse resolution auxiliary DEM data has 10 

little or no impact on the results for void size classes A through D, but the possible 11 

inclusion of such auxiliary information becomes important for the larger void classes (E 12 

through H). If a VF algorithm is to be recommended for these void sizes for global 13 

application, then we must differentiate between the three choices for auxiliary 14 

information.  15 

Table 5d shows the best performing VF algorithm and the auxiliary information that 16 

was used for all terrain units for size classes E through H.  Looking only at the auxiliary 17 

DEM results, we can see that SRTM30 is the preferred auxiliary DEM for very large 18 

voids (size classes G and H), whilst there is no one recommended auxiliary DEM for 19 

classes E and F. Looking at the VF method and auxiliary information together, KR 20 

always uses SRTM30, and ANU always uses SRTM30, except for the PLAINS, where 21 

a variety of methods is recommended based on the void size class. A mixture of VF 22 

algorithm is recommended for medium size voids (E-F) based on the TU (IDW for 23 

Plains, TIN for HILLS, and SP/ANU for the remaining TU).  24 
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It is interesting to see that certain algorithms deliver the best results without 1 

auxiliary information (e.g. recommending SP without any auxiliary information for size 2 

class F in high plateaus). Further investigation is required to determine why the errors 3 

without auxiliary information are less than with VF algorithms that use auxiliary 4 

information. One reason might be that we a have not sufficiently compensated for the 5 

errors in the dataset (c.f section 1.2) during the preparation of input data for the VF and 6 

this may bias the results. Another observation is that most of the recommended VF 7 

algorithms create a smooth surface which stays within the elevation range of the input 8 

data. This means that mountain ridges for example can not be represented properly, 9 

even if the RMSE/ME proves that the approximation is best for the VF patch, and that 10 

the local noise structure of the surrounding area is smoothed out.  Finally, GTOPO30 is 11 

derived from a range of topographic sources, and the variation in quality of these 12 

sources across Africa is likely to have an impact on these results. 13 

 14 

4.4. Evaluation of void filling methods with respect to auxiliary information  15 

To determine if the inclusion of low quality auxiliary information has any improvement 16 

on the VF algorithms, for each void we computed the percentage difference between the 17 

RSME with no auxiliary information and (i) RMSE with SRTM30 and (ii) RMSE with 18 

GTOPO30. The results are summarised by void size class and terrain (Table 6) for all 19 

void sizes E through H.  20 

Percentages lower than 100 indicate that the inclusion of auxiliary information 21 

resulted in an improvement and vice versa. A percentage equal to 100 means that the 22 

first restriction of the area threshold (c.f. Section 2.5) has been met, however due to the 23 

second restriction (e.g. the shape of the void) the auxiliary data has not been used.   24 
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As expected, overall, SRTM30 improves the VF results more than GTOP30, but 1 

surprisingly both auxiliary datasets also degrade the VF results in several cases (e.g. in 2 

mid-sized voids and in some terrain units - Table 6). This suggests that the area 3 

threshold should depend on the TU. For example, for VF algorithm KR in 4 

MOUNTAINS using GTOPO30, an increase in accuracy can only be observed if the 5 

void area is larger than void size class F. Below that void size class, GTOPO30 did not 6 

improve the VF results and even decreases accuracy. For GTOPO30, the area threshold 7 

should be only the largest class (H) for PLAINS, LOW PLATEAUS, HILLS and HIGH 8 

MOUNTAIN. For HIGH PLATEAUS no recommendation can be given (or even not to 9 

use coarse scale auxiliary information), and for MOUNTAINS the area threshold should 10 

be class G.  11 

SRTM30 not surprisingly outperforms GTOPO30. Generally, the largest 12 

improvements for SRTM30 occur in large and very large void sizes (G and H). 13 

Similarly to GTOPO30, the area thresholds and when to use auxiliary information vary. 14 

For PLAIN, LOW PLATEAU and MOUNTAINS the void size class G is 15 

recommended; for HIGH PLATEAUS again no recommendation can be given and for 16 

HILLS and HIGH MOUNTAIN the area threshold should be set to H.  17 

These results indicate that such coarse resolution auxiliary data is generally only 18 

applicable to extremely large voids, and highlights the need to use higher resolution 19 

auxiliary datasets in the void filling the SRTM data, rather than the SRTM30 and 20 

GTOPO30 datasets used here.  21 

 22 

[Insert Table 6] 23 

 24 
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4.5 Application of the ‘best’ VF methods to the global SRTM data 1 

One of the objectives of this paper has been to provide a worldwide database of voids, 2 

in which each void has an assigned “best” method based on terrain unit and void size. 3 

This has been performed based on the results in Table 5, and the database will be 4 

provided to the international user community at http://srtm.jrc.it/ and 5 

http://srtm.csi.cgiar.org/. The International Centre for Tropical Agriculture (CIAT), 6 

through the Consortium for Spatial Information (CSI), has been providing ready to use 7 

seamless (i.e. void filled) SRTM elevation data since 2003. These derived data have 8 

been gradually improved over three versions through the use of better interpolation 9 

algorithms (currently ANUDEM) and auxiliary DEMs.  10 

The database of “best” VF methods could be used to create a fourth version of the 11 

seamless SRTM elevation data by identifying the voids where there is no high 12 

resolution auxiliary DEM information available (which is currently the vast majority of 13 

voids), and by then applying the recommended VF algorithm to the remaining voids. 14 

Where high resolution DEMs are available we recommend the ANUDEM procedure. 15 

 16 

5. Conclusions 17 

5.1. General conclusions 18 

The authors assume that each void occurs due to a technical reason, which can be partly 19 

attributed to terrain, land use and other reasons. In the course of this analysis, void areas 20 

in the SRTM data set have been quantified in terms of their terrain and size,  providing a 21 

statistically sound and extensive evaluation of different VF algorithms over a wide 22 

range of terrain units and void sizes (objective i).  23 
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Different VF algorithms have been implemented in a GIS, and used to analyse 1 

performance using RMSE/S on 1,304 relocated voids. Based on these results a decision 2 

table has been created, which provides an answer to an important question: which VF 3 

method can be recommended for a void of a given size in a given terrain unit? Contrary 4 

to some previous findings, the best methods can be generalised as: Kriging or Inverse 5 

Distance Weighting interpolation for small and medium size voids in relatively flat low-6 

lying areas; Spline interpolation for small and medium sized voids in high altitude and 7 

dissected terrain; Triangular Irregular Network or Inverse Distance Weighting 8 

interpolation for large voids in very flat areas, and an advanced spline method 9 

(ANUDEM) for large voids in other terrains (objectives ii and iv). 10 

We have shown that coarse resolution auxiliary information was only helpful if the 11 

void areas exceeded a certain size threshold (objective iii). Differences in decrease of 12 

RMSE could be observed between use of the SRTM30 and the GTOPO30 DEMs. 13 

Finally, we have created a database that can be used to select a VF algorithm and 14 

auxiliary DEM to fill each of the 3,339,913 voids in the SRTM data (objective v). 15 

 16 

5.2. Further work 17 

5.2.1 Issues with the SRTM30 data.  In this paper we tested only coarser scale 18 

resolution data as auxiliary information for the VF process. The VF using the SRTM30 19 

obviously creates a better result than using GTOPO30 auxiliary information (Table 3). 20 

Still, SRTM30 is a seamless DEM based on the SRTM data product and is therefore 21 

also influenced by the voids. Most voids in the underlying SRTM data were interpolated 22 

in a 10 × 10 averaging process that re-sampled the data from 3 seconds to 30 seconds. 23 

Voids that were too large to be interpolated in this manner were filled using GTOPO30.  24 
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Since the SRTM data does not have global coverage, GTOPO30 data from areas above 1 

60ºN and below 56ºS were fused with the SRTM data to create the final SRTM30 data.  2 

No attempt was made to adjust the vertical datum of either dataset in this fusion. There 3 

are three observations to be made here. Firstly, the SRTM30 product will have variable 4 

quality in areas where there were reasonably large voids within the 10 × 10 re-sampling 5 

window. Secondly, there is no advantage in using SRTM30 instead of GTOPO30 as an 6 

auxiliary DEM for interpolating very large voids since the auxiliary information in these 7 

areas will be almost identical. Thirdly, if the recommended VF algorithms and all 8 

available auxiliary datasets are used to create a seamless 3 second SRTM dataset (as 9 

would be the case in a  fourth version of the CSI SRTM data), this in turn can be used to 10 

create a higher quality SRTM30 dataset and other global coarse resolution derivatives. 11 

 12 

5.2.2 Size thresholds for auxiliary data. A second question is the size of thresholds for 13 

higher resolution auxiliary datasets, which might influence results quite significantly. A 14 

conservative threshold for using auxiliary elevation information (void size class D) has 15 

been applied which was obviously not large enough (Table 6) under certain conditions. 16 

Further research is required to provide better information on the required resolution and 17 

quality of auxiliary DEMs for filling voids of different sizes. 18 

 19 

5.2.3 High resolution auxiliary data. We assume that high resolution DEM data (e.g. 20 

based on ASTER or SPOT satellite derived data, or digitised from fine-scale 21 

topographic maps) should deliver superior results for void filling as the density and 22 

distribution of the auxiliary data is superior. The degree of improvement offered by 23 

these data has to be offset against the time and the cost of acquiring and processing such 24 
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information. Higher resolution may not necessarily mean higher quality; relative 1 

ASTER DEM products show height differences of up to 600 meters between three 2 

different scenes for the same area and other ASTER DEM errors are specified in 3 

Lönnqvist and Törmä (2004). Inherent to the use of auxiliary information is the question 4 

of how different errors can automatically be compensated for, as outlined in section 1.2. 5 

 6 

5.2.4 Better understanding of void filling algorithms. This analysis has treated the 7 

VF algorithms as black boxes in that we have only looked at the results of the 8 

interpolation accuracy rather than attempted to investigate the reasons why one method 9 

performs better than another. Interrogation and analysis of the inner workings of these 10 

algorithms under different conditions would be a valuable aid to researchers who need 11 

to select an appropriate method for a given problem.  12 

 13 
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Table 1. Number of global voids by terrain unit and void size (A-H).  1 

 2 
 A B C D E F G H Sum 
PLAINS 458,851 27,968 7,414 3,746 1,810 1,453 552 437 502,231
PLATEAUS 765,745 54,739 13,700 5,425 1,831 965 223 67 842,695
H. PLATEAUS 24,056 1,082 278 171 107 128 91 85 25,998
HILLS 195,055 13,097 3,286 1,157 339 157 21 5 213,117
MOUNTAINS 789,587 58,258 15,673 6,319 2,125 1,108 228 51 873,349
H. MOUNTAINS 680,952 53,497 15,825 7,235 2,869 1,888 523 154 762,943
Sum 2,914,246 208,641 56,176 24,053 9,081 5,699 1,638 799 3,220,333*

 3 
 4 
* The total number of voids in this table does not sum  to 3,399,913 due to some voids  5 
not being assigned terrain units. The vast majority of these unassigned voids are in 6 
coastal areas and should be classed as PLAINS.7 
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Table 2. Number of artificial voids by terrain unit and void size (A-H)  1 
 2 

 A B C D E F G H Sum 
PLAINS 45 45 60 60 45 15 15 15 300
PLATEAUS 65 60 75 80 60 20 28 12 400
H. PLATEAUS 30 40 40 40 35 10 5 0 200
HILLS 15 20 25 20 20 0 0 0 100
MOUNTAINS 30 40 39 40 30 10 14 6 209
H. MOUNTAINS 15 15 20 30 5 5 5 0 95
Sum 200 220 259 270 195 60 67 33 1,304

 3 



 

 

42 

Table 3. Mean and standard deviation (in brackets) of the RMSE ranking for each 1 

method by terrain unit. Best results are in bold.  2 

 No auxiliary DEM 
 KR* SP TR IDW MW TIN ANU 

PLAINS 
6.04 

(3.82) 
17.40 
(4.15)

9.79 
(5.60)

6.44 
(3.76)

10.6 
(5.06)

8.52 
(4.66) 

10.00 
(5.18)

PLATEAUS 
5.71 

(4.12) 
9.79 

(6.75)
16.40 
(3.76)

10.50 
(3.83)

10.70 
(4.21)

6.74 
(3.91) 

7.02 
(4.37)

H. PLATEAUS 
5.18 

(3.56) 
6.23 

(6.24)
17.50 
(2.06)

11.50 
(3.07)

11.10 
(3.35)

6.88 
(3.53) 

7.01 
(4.04)

HILLS 
5.79 

(4.39) 
5.36 

(5.62)
17.50 
(2.18)

11.50 
(3.35)

10.70 
(3.95)

7.01 
(3.41) 

8.36 
(4.17)

MOUNTAINS 
5.95 

(3.82) 
5.16 

(5.77)
17.10 
(3.35)

12.20 
(2.99)

11.30 
(3.29)

7.14 
(3.83) 

7.78 
(3.81)

H. MOUNTAINS 
5.97 

(3.50) 
4.06 

(4.93)
17.50 
(2.28)

12.90 
(2.46)

12.60 
(2.79)

6.46 
(3.31) 

8.24 
(3.95)

  
GTOPO30 

 KR SP TR IDW FF TIN ANU 

PLAINS 
7.25 

(4.72) 
17.50 
(4.02)

9.74 
(5.51)

6.44 
(3.76)

15.70 
(6.48)

10.40 
(5.30) 

11.8 
(5.39)

PLATEAUS 
6.00 

(4.24) 
10.20 
(6.98)

16.30 
(3.69)

10.50 
(3.82)

18.60 
(4.37)

7.75 
(4.54) 

7.72 
(4.74)

H. PLATEAUS 
5.83 

(4.27) 
6.86 

(6.83)
17.20 
(2.23)

11.50 
(3.06)

19.60 
(2.46)

8.20 
(4.21) 

7.94 
(4.46)

HILLS 
5.83 

(4.31) 
5.71 

(5.90)
17.40 
(2.17)

11.50 
(3.36)

19.30 
(3.40)

7.25 
(3.54) 

8.44 
(4.28)

MOUNTAINS 
6.39 

(4.33) 
6.90 

(7.26)
17.00 
(3.15)

12.20 
(2.98)

17.90 
(4.79)

8.35 
(4.59) 

8.54 
(4.03)

H. MOUNTAINS 
6.14 

(3.83) 
4.47 

(5.77)
17.40 
(2.33)

12.90 
(2.46)

18.60 
(3.83)

6.91 
(3.86) 

8.53 
(4.05)

  
SRTM30 

 KR SP TR IDW FF TIN ANU 

PLAINS 
5.67 

(3.79) 
16.70 
(4.30)

9.65 
(5.49)

6.44 
(3.76)

10.00 
(6.38)

7.97 
(4.98) 

9.97 
(5.31)

PLATEAUS 
5.28 

(3.93) 
9.34 

(6.39)
16.20 
(3.72)

10.50 
(3.82)

15.50 
(5.58)

6.65 
(3.99) 

6.69 
(4.49)

H. PLATEAUS 
5.22 

(3.48) 
5.94 

(6.03)
17.30 
(2.20)

11.50 
(3.06)

17.20 
(3.78)

7.43 
(3.81) 

7.36 
(4.18)

HILLS 
5.68 

(4.23) 
5.39 

(5.51)
17.40 
(2.14)

11.50 
(3.36)

16.30 
(4.49)

6.88 
(3.45) 

8.30 
(4.30)

MOUNTAINS 
5.49 

(3.86) 
5.02 

(5.49)
17.00 
(3.22)

12.20 
(2.98)

15.50 
(4.74)

6.97 
(4.05) 

7.50 
(4.03)

H. MOUNTAINS 
5.63 

(3.30) 
3.86 

(4.49)
17.50 
(2.18)

12.90 
(2.46)

16.70 
(3.99)

6.38 
(3.29) 

8.00 
(4.07)
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 1 

* Methods are Kriging (KR), Spline (SP), Trend (TR), Inverse Distance Weighting 2 

(IDW), Moving Window Average (MW), Fill and Feather (FF), Triangulated Irregular 3 

Network (TIN), and ANUDEM (ANU).  4 
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Table 4. Mean  and standard deviation (in brackets) of the RSME ranking for each 1 

method by void size class. Best results are in bold.  2 

 No auxiliary DEM 
 KR* SP TR IDW MW TIN ANU 
A 6.20 

(3.84) 
16.60 
(4.74) 

9.26 
(5.97)

6.94 
(3.89)

10.60 
(5.45)

9.01 
(4.89) 

10.00 
(5.45) 

B 5.56 
(3.99) 

14.40 
(6.74) 

13.00 
(5.23)

7.66 
(4.52)

10.70 
(4.71)

7.94 
(4.40) 

9.16 
(4.82) 

C 5.74 
(4.05) 

9.77 
(6.74) 

16.80 
(3.30)

10.70 
(3.53)

10.70 
(3.89)

6.27 
(3.48) 

6.70 
(4.18) 

D 5.74 
(4.28) 

4.49 
(4.95) 

17.70 
(1.35)

12.00 
(2.99)

11.00 
(3.70)

6.89 
(3.26) 

8.15 
(4.10) 

E 5.52 
(3.88) 

5.33 
(5.73) 

17.30 
(2.77)

12.00 
(3.16)

11.40 
(3.39)

7.15 
(3.81) 

7.80 
(4.05) 

F 6.62 
(3.50) 

5.86 
(5.97) 

16.70 
(4.29)

11.60 
(2.95)

9.95 
(2.84)

6.67 
(3.80) 

6.41 
(3.23) 

G 5.68 
(3.36) 

4.22 
(5.64) 

17.60 
(1.72)

12.80 
(2.48)

12.70 
(2.98)

6.74 
(3.40) 

9.07 
(3.85) 

H 7.20 
(3.64) 

6.36 
(6.53) 

17.40 
(3.24)

13.00 
(2.37)

12.60 
(2.32)

6.00 
(3.01) 

6.16 
(3.14) 

 GTOPO30 
 KR SP TR IDW FF TIN ANU 
A 6.53 

(4.15) 
16.80 
(4.69) 

9.16 
(5.93)

6.94 
(3.89)

14.80 
(7.07)

9.65 
(5.35) 

10.60 
(5.56) 

B 6.89 
(5.03) 

14.40 
(6.66) 

13.00 
(5.11)

7.66 
(4.51)

16.30 
(5.94)

10.10 
(5.12) 

11.00 
(5.43) 

C 6.14 
(4.25) 

10.30 
(7.05) 

16.60 
(3.22)

10.70 
(3.53)

19.60 
(2.78)

7.55 
(4.44) 

7.62 
(4.68) 

D 5.75 
(4.20) 

4.81 
(5.28) 

17.60 
(1.37)

11.90 
(2.99)

19.50 
(2.54)

7.13 
(3.40) 

8.22 
(4.21) 

E 5.83 
(4.19) 

5.64 
(6.08) 

17.20 
(2.82)

12.00 
(3.16)

18.00 
(4.85)

7.77 
(4.14) 

8.23 
(4.19) 

F 8.31 
(4.81) 

12.00 
(8.39) 

16.20 
(3.62)

11.60 
(2.92)

19.80 
(1.63)

10.70 
(5.32) 

8.91 
(4.31) 

G 5.57 
(3.26) 

4.11 
(5.41) 

17.50 
(1.79)

12.80 
(2.48)

17.90 
(4.26)

7.00 
(3.65) 

9.20 
(3.87) 

H 7.73 
(4.44) 

7.66 
(8.02) 

16.90 
(3.30)

13.00 
(2.37)

20.00 
(1.66)

7.43 
(4.65) 

7.10 
(3.99) 

 SRTM30 
 KR SP TR IDW FF TIN ANU 
A 6.26 

(3.84) 
16.5 

(4.74) 
9.21 

(5.94)
6.94 

(3.89)
10.50 
(6.51)

8.85 
(5.06) 

10.10 
(5.47) 

B 4.96 
(3.81) 

13.40 
(6.37) 

12.80 
(5.21)

7.66 
(4.51)

11.20 
(6.83)

7.35 
(4.65) 

8.90 
(5.00) 

C 5.21 
(3.84) 

9.20 
(6.29) 

16.60 
(3.24)

10.70 
(3.53)

16.00 
(5.00)

6.15 
(3.59) 

6.32 
(4.29) 
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D 5.64 
(4.12) 

4.51 
(4.82) 

17.70 
(1.30)

11.90 
(3.00)

16.80 
(3.87)

6.79 
(3.30) 

8.09 
(4.22) 

E 5.53 
(3.85) 

5.21 
(5.63) 

17.20 
(2.81)

12.00 
(3.16)

16.60 
(4.36)

7.43 
(3.93) 

7.96 
(4.09) 

F 5.65 
(3.80) 

6.65 
(6.48) 

16.30 
(3.89)

11.60 
(2.92)

14.70 
(4.01)

6.46 
(4.38) 

5.95 
(3.46) 

G 5.17 
(3.31) 

3.15 
(3.50) 

17.50 
(1.75)

12.80 
(2.48)

16.20 
(5.12)

6.38 
(3.49) 

8.64 
(4.30) 

H 6.10 
(3.28) 

5.73 
(5.66) 

17.20 
(2.99)

13.00 
(2.37)

16.00 
(3.49)

5.76 
(2.89) 

5.40 
(3.08) 

 1 

* Methods are Kriging (KR), Spline (SP), Trend (TR), Inverse Distance Weighting 2 

(IDW), Moving Window Average (MW), Fill and Feather (FF), Triangulated Irregular 3 

Network (TIN), and ANUDEM (ANU).4 
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Table 5. Best method results in terms of average rank by terrain unit and void size using 1 

(a) no auxiliary DEM, (b) GTOPO30 auxiliary data, (c) SRTM30 auxiliary data, and (d) 2 

across all data methods. 3 

(a) No auxiliary  Void size 
Terrain unit A B C D E F G H 

PLAINS 
KR* 
6.11 

IDW 
6.11 

KR 
5.70

KR 
6.95

IDW 
4.43

IDW 
4.66 

KR  
4.80 

TIN 
5.00

PLATEAUS 
KR 

5.92 
KR 

4.98 
KR 

4.48
SP 

5.34
ANU 
4.31

ANU 
5.30 

ANU 
5.60 

TIN 
6.75

H. PLATEAUS 
KR 

3.33 
SP 

3.65 
SP 

4.75
TIN 
5.05

  

HILLS 
KR 

4.83 
KR 

4.07 
KR 

4.05
ANU 
4.40

SP 
1.57

SP 
 4.80 

MW 
5.20 

MOUNTAINS 
KR  

5.30 
KR 

4.97 
SP 

3.84
SP 

1.55
SP 

4.86
TIN  
6.00 

TIN 
4.88 

ANU 
8.33

H. MOUNTAINS 
SP  

2.40 
KR  

4.40 
SP 

2.35
SP 

2.40
SP 

2.40
ANU 
2.20 

TIN 
7.20 

(b) GTOPO30 Void size 
Terrain unit A B C D E F G H 

PLAINS 
KR 

6.11 
IDW 
6.11 

KR
 5.70

IDW 
7.51

IDW 
4.42

IDW 
4.66 

IDW 
5.53 

IDW 
8.00

PLATEAUS 
KR 

5.82 
KR 

4.98 
KR 

4.48
SP 

5.29
ANU 
5.53

KR  
6.80 

IDW 
8.18 

KR 
9.72

H. PLATEAUS 
KR 

3.36 
SP 

3.65 
SP 

4.75
IDW 
8.95

  

HILLS 
KR 

4.83 
KR 

3.90 
KR 

4.05
ANU 
4.40

SP 
1.51

ANU 
7.60 

ANU 
6.80 

MOUNTAINS 
KR  

5.30 
KR 

4.95 
SP 

3.84
SP 

1.55
KR 

7.06
KR  

9.50 
ANU 
9.94 

KR 
7.00

H. MOUNTAINS 
SP  

2.40 
KR  

4.40 
SP 

2.35
SP 

2.40
SP 

2.40
IDW 

10.60 
ANU 
4.60 

(c) SRTM30 Void size 
Terrain unit A B C D E F G H 

PLAINS 
KR 

6.11 
IDW 
6.11 

KR
5.70

KR
 6.80

IDW 
4.42

KR  
4.00 

KR  
3.00 

TIN 
2.33

PLATEAUS 
KR 

5.77 
KR 

4.98 
KR 

4.48
SP 

5.29
ANU 
4.30

KR 
4.95 

ANU 
3.53 

ANU 
1.83

H. PLATEAUS 
KR  

3.60 
SP 

3.65 
SP 

4.75
KR 

5.90
  

HILLS 
KR 

4.83 
KR 

4.02 
KR 

4.05
ANU 
4.40

SP 
1.57

KR  
5.80 

ANU 
1.60 

MOUNTAINS 
KR 

 5.30 
KR 

4.95 
SP 

3.84
SP 

1.55
KR 

4.86
KR  

4.30 
ANU 
4.88 

ANU 
1.00

H. MOUNTAINS 
SP  

2.40 
KR  
4.4 

SP 
2.35

SP 
2.40

SP 
2.40

ANU 
3.80 

ANU 
1.60 
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(d) All cases**         
Terrain unit A B C D E F G H 

PLAINS 
    IDW +  

no aux 
KR + 
sr30 

KR + 
sr30 

TIN +  
sr30 

PLATEAUS 
    ANU+

sr30  
KR + 
sr30 

ANU+
sr30  

ANU+
sr30  

H. PLATEAUS 
    SP + 

gt30 
SP + 
no aux 

ANU+
sr30  

 

HILLS 
    TIN + 

noaux 
   

MOUNTAINS 
    SP + 

noaux 
TIN +  
sr30 

ANU+
sr30  

ANU+
sr30  

H. MOUNTAINS 
    SP + 

gt30 
ANU+ 
noaux 

ANU+
sr30  

 

 1 

* Methods are Moving Window Average (MW), Kriging (KR), Spline (SP), Inverse 2 

Distance Weighting (IDW), Triangulated Irregular Network (TIN), and ANUDEM 3 

(ANU).  4 

** No auxiliary DEM (no aux), SRTM30 (sr30) and GTOPO30 (gt30). 5 
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Table 6. Average reduction in RMSE (in %) when auxiliary DEMs are used. Methods 1 

are Kriging (KR), Spline (SP), Triangulated Irregular Network (TIN), and ANUDEM 2 

(ANU). 3 

Terrain VF GTOPO30 SRTM30 
Unit Method E F G H E F G H
PLAINS KR 143 118 161 192 109 100 91 72

 SP 141 114 103 35 99 87 59 16
 TIN 171 144 218 279 107 100 99 89
 ANU 183 157 210 273 114 103 99 96

PLATEAUS     
 KR 105 103 119 107 99 94 95 87
 SP 110 134 157 84 99 105 96 58
 TIN 111 120 130 121 101 105 94 82
 ANU 107 115 126 120 100 100 94 81

HIGH PLATEAUS    
 KR 121 104   
 SP 138 100   
 TIN 144 120   
 ANU 128 112   

HILLS     
 KR 100 100 110 100 100 100 102 97

 SP 100 100 162 78 100 100 118 71
 TIN 100 100 112 106 100 100 101 94
 ANU 100 100 105 104 100 100 103 91

MOUNTAINS     
 KR 100 127 81 100 93 72 
 SP 100 161 137 100 101 84 
 TIN 100 155 94 100 114 77 
 ANU 100 149 85 100 120 71 

HIGH MOUNTAINS    
 KR 112 116 121 86 93 95 100 61
 SP 239 161 207 62 134 107 140 37
 TIN 122 137 235 91 95 100 180 64
 ANU 114 118 205 90 95 97 162 63

 4 

 5 
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Figure captions 1 

 2 

Figure 1. The global distribution of voids in the SRTM data, represented by the 3 

proportion of void area in each 1 × 1 degree SRTM tile. Note the clustering of voids 4 

over mountainous and desert areas and the northern extent of the SRTM data (60ºN) 5 

 6 

Figure 2. Voids (in black) overlaid on the SRTM30 elevation data for two extreme 7 

cases, Libya (upper) and Nepal (lower). The 1 × 1 degree SRTM tile boundaries have 8 

also been superimposed to express scale. The key shows elevation in metres above 9 

mean sea level. 10 

 11 

Figure 3. Log log plot of the void size against the frequency distribution for the global 12 

void dataset (n= 3,339,913). 13 

 14 

Figure 4. A 15 class terrain typology for Africa, based on the methodology proposed by 15 

Meybeck et al. (2000). 16 

 17 

Figure 5. Percentage of voids per terrain unit and void size class for the global dataset. 18 

 19 

Figure 6. Flow diagram of the VF algorithm assessment methodology. 20 

 21 

Figure 7. Examples of the VF algorithms applied to a test area (a) in the SRTM DEM. 22 

The methods are (b) TOPOGRID, (c) TIN, (d) IDW, (e) Spline, (f) Kriging, (g) Trend, 23 

(h) Moving Average, and (i) Fill and Feather.  24 
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Figure 3 

log log plot of global SRTM void size in pixels (x) against frequency (y)
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Figure 4 

 



Figure 5 

Percentage of voids by terrain class per size class
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